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by

C. J. Everett

ABSTRACT

..

A simple Monte Carlo method is presented for estimating the
probabilityp(Sl,...,SKlh) of the state vector (S1,....SK) of the
K terminal (data)nodes in a general inference tree (with an arbi-
trary number of nodes, each having a prescribed number of possible
states) assuming the “hypothesis”node to be in state h. From this
information,the probabilityp(hlSl,....SK) of hypothesis h, assuming
an observed state vector (S1,...,SK) at the terminalnodes, is then
computed from Bayes’ formula. The whole routine is easily coded,
and a flow chsrt is included.

I. INTRODUCTION

If p(h,d) is a

the pair of indices

joint probabilitydensity for

(h,d), then

p(h) : ~ p(h,d)

d

is the correspondingmarginal density for h,

p(d{h) Z p(h,d)/p(h)

is the density for d, assuming h. Supposing

only p(h) and p(dlh) are known, then p(hld),

(1)

and

(~)

that

the

probabilityof h, assuming d, is seen from F.qs.(1)

and (2) to be

P(hld) = p(h,d)/2 p(h,d)

h

= p(d Ih)p(h) ~ p(dlh)p(h) .

h

(3)

The last expression, in terms of the given densi-

ties, is Bayes’ formula for p(hld).

We are concerned here wfth its application to

a “hierarchicalinference tree,” for which p(h) is

given explicitly,and p(dlh) is expressible in terms

of given trantiitionprobabilities,albeit in an

extremely complicatedway. In the following com-

plete treatment of the problem, which is designed

for computer coding, the role of Monte Carlo consists

in the estimation of the probabilitiesp(dlh) by

sampling methods, thus avoiding the difficult exact

computation.

11. THE INFERENCE TREE

The problem and general method are best de-

scribed by reference to a particular but sufficient–

ly complicatedexample. Topologically,we are con-

cerned with an “inference tree” such as that in

Fig. 1. The N(=18) points n = 1,...,N are called

“nodes” and are here numbered “level by level,”

advancing from left to right on each level k, the

levels proceeding downward from 1 = 1 to 1.= L(=4),

the lowermost. A table is stored giving the number

N(l) of the laat node on each level, as in Table I.

TABLE I

LEVEL TERMINUS

~ N(l)

1 4

2 11

3 16

4 18

1



Fig. 1. An InferenceTree

1=1

1=2

./.3

i=4=L

The single topmast node, n = 1, is the “hypoth-

esis node” and is the only one with no “ancestor.”

Each node n > 2 has exactly one ancestral node m(n),

and these are stored in a table such aa Table II.

The K nodes without “progeny” (here n = 8, 9,

11, 13, 14, 15, 16, 17, 18) are called “terminal”

or “data” nodes and are those subject to direct

observation.

TABLE II

ANCESTUL NorIEs

n— !!L!m
1 0

2 1

3 1

4 1

5 2

6 2

7 3

8 3

9 3

10 4

11 4

12 5

13 6

14 7

15 10

16 10

17 12

18 12

III. NODAL STATES AND TRANSITION PROBABILITIES

Each node n = 1,...,N of the inference tree

can exist in just one of a specified number u(n) of

“statea,” S(n) =+1,...,u(n). (No table of U(n) need

be stored.)

It ia eupposed that the hypothesis node n = 1

has H (here 3) such states, h - 1,...,H, and that

the probabilityp(h) of its existence in any atate

h is known. This information is stored in a table

such as Table III.
I

It is further aaaumed that, _ the atate

i=l ,...,u(m) of the anceatral node m = m(n) of

any node n > 2, there is a known transitionprob-

ability 11~ for node n to asaume the j-th of its

statea, j = 1,...,cf(n).The correspondingcumulative

probabilitiesare here stored in the form of a

U(m) x U(n) matrix

()P;

(row index i, column index j), one such matrix for

each linked pair of nodes [m(n),n],n = 2,...,N.

(To simplify coding, these matrices may obviously

be made square, and of identical size, if storage

space permits.) In our example, we store Table IV.

For instance, given that node m - 10 is in state

i = 3, there is an 80% chance that node n = 15 will

assume state j = 2.

Iv. TRE PRIOR DATA PROBABILITIESAND MONTE CARLO

Now suppose that node n = 1 is in a specified

state h, and fix upon a particular “atate vector”

[S(nl),o..,S(%)] of the K terminalnoclea

n = nl,....nK. This connotes that, for each

v = 1,...,K, the terminal node nv is in its atate

S(nv) [=1,....u(nv)]. For the final application of

Bayes’ formula we require the probability

Pus,... , S(nK)lh]

TABLE 111

HYPOTHESIS PROBABILITIES

~ m

1 0.3

2 0.2

3 0.5

(4)

.=--.

L
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of the terminal state vector [S(nl),...,S(~)],

assuming n = 1 to be in state h. Even for relative-

ly simple treea, an analytical approach, although

well defined, its far from easy (Ref. 1). In

principle,we should consider separately each pos-

sible sequence of transitionsi + j throughout the

tree which result in the stipulatedstate vector,

multiplying all the correspondingtransitionprob-

m for all pairs (mjn) of linked nodes,
abilitiea ‘ij
and then summing all such products for all possible

transitionsequences.

In contraat, the eatimstion of the probability

(4) by sampling is transparentlysimple, since we

~Y regard a terminal atate vector aa the result of

a kind of shower, or cascade descending from n = 1,

and governed by the given transitionprobabilities.

Thus, asauming n = 1 to be in the particular state

h, one “throws” successivelyfor the atate S(n) of

each node n = 2,...,N(1)on level L = 1, using the
In

stored transitionprobability tablea p
hj“

Having

determined s1l states on level 1, the states of all

nodes on level 2 may then be thrown for in similar

faahion, and so down through the lowest level L.

At this point, the statea S(n) of all nodes

n = 1,...,N have been assigned, and the results re-

corded in a temporary storage table aa exemplified

by Table V.

TABLE V

CASCADE STATES

n

1

2

.

.

.

*8

*9

10

* 11

12

* 13

* 14

* 15

* 16

* 17

* 18

MQL
h

s(2)

.

.

.

S(8)

s(9)

s(lo)

s(11)

s(12)

s(13)

s(14)

s(15)

S(16)

S(17)

S(18)

In particular,a state vector [S(nl),...,S(~)l

has been determined for the K terminal nodes

(nl,...,@ (starredin Table V). There are

D ~ u(nl)”-~cf(~)

such vectors in all, and they are easily enumerated

by a single index, d = 1~2,...,D, aa aho~ in the

Appendix. Having computed the index d of the atate

vector resulting from the above cascade, a 1 is

tallied in a storage location N(h,d). The latter

may be visualized in a tabular form$ such as

Table VI for our example. Repetition of the process

for a sufficientlylarge number C of cascades yields

all the possible terminal atate vectors d = 1,...,D,

each with approximatelyits correct frequency N(h,d).

Norming by C then gives the Monte Carlo approxima-

tion to the probability (4), namely

p(dlh) ~N(h, d)/C

and the result is stored back in location N(h,d).

The routine is followed as indicated for each

of the states h = 1,...,H of n = 1. At this point,

Table VI contains an entire listing of (approximate)

probabilities (4), namely

N(h,d) - p(dlh)

h - 1,2,...,H,d=l,2 ,...,D, and the first part of

the problem is complete.

v. THE POSTERIOR PROBABILITY OF HYPOTHESIS h

The ultimate question in hierarchical inference

asks for the probabilityp(hld) of a certain hypo-

thesis (stateh of node n = 1), assuming a partfcu-

I.ardata vector, of index d, to be observed at the

terminal nodes nl,....%. As noted in Sec. I, this

is readily computed as

TABLE VI

INITIALLY,FREQUENCIESN(h,d)

h
1 2 ““” 3072 - D

I

1

2

3 I

------

.

.

4
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p(h[d) =
/

p(dlh) P(h) ~ P(dlh) P(h) TABLE VII

h BAYESIAN DF.NOMINATORS

.d 1 2 ““” 3072 = D

which in our notation at this point is approximate-

ly
A(d)

/
N(h,d) p(h) ~ N(h,d) p(h) . (5)

h

The details of machine computation,which are rou-

tine, are indicated in the flow chart of Fig. 2. A

storage block must be resened for the D sums

A(d) ~ ~ N(h,d) p(h)

h“

as indicated in Table VII.

If the quotients obtained in (5) are stored

back at the locationsN(h,d), Table VI will contain

the entire set of approximations

p(hld) - N(h,d)

at the end of the problem. Printing the complete

result is obviously impracticalin an involved case

such as our example, and ia of course limited to

the informationactually required. Various sum

checks can easily be included, as indicated in

Fig. 2.

Aside from the permanent storage already men-

tioned, one must include one additional table such

as Table VIII.

TABLE VIII

ADDITIONAL CONSTANTS

H 3

c 105

L 4

D 3072

VI. A FLOW CRART

In the following chart, which is designed to

handle the general problem as just described, only

the formula for the terminal state index d (cf. the

Appendix) and the print routine are subject to

change. The letter r below refers to the next ran-

dom number of the random number generator. It iS

understood that transfers to previous entries are

executed on Y (yes) or N (no),with the indicated

indices advanced by 1, whereas the opposite decision

always leads to the next step. The printed sum-

check parameters T ,...,T
1

h and U should all be unity.

Moreover, if any column of the final Table VI is

printed, its sum should also be unity.

.!

.

s



Clear N(h,d)

S(m) + i

I+j

r

@~ mn

@——
r < Pij

j+l~
j +S(n)

@=——
Y

n < N(k)
n+l —

L<L

@—— —
n+l Y
1+1

d (Appendix)

1 +N(h, d) +N(h,d) a~ h+l~

C<c @+— d+l -

a~
Y

c+l —
i+d

a~
N(h,d)/C + N(h,d) @————

@——— d+l+

l+d

N(h,d) +T(h) + T(h)

d<D

h<H

l+d

O + A(d)

l+h

N(h,d) p(h) + N(h,d)

N(h,d) +A(d) + A(d)

h<H

d<D

l+d

l+h

N(h,d)/A(d) +N(h, d)

h<H

d<D

l+d

O+u

A(d) +U+U

d<D

Print:

‘l’”””’Th;u

et al.

Fig. 2. Flow Chart

APPENDIX

ENUMERATIONOF STATE VECTURS

For machine purposes,we require an enumeration For the moment, we denote a(iv) by av and S(iv) by

of the set of all s“.

I D = a(nl) ‘“” a(~)

terminal state vectors [S(nl),...,S(nK)]by means of then

a single index

If the states of terminal

s;-o, 1, ““”, av-l

the function

node nv were numbered

-

0

.

d=l,2, ”””,D .

6
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0

would run over all the integers O,1,..,,(u
1
.“”uK)-l.

Since in our notation Sv runs over the integers

1,2,..,,0”,it is clear that a suitable formula for

the index d = 1,2,....u10.00 = D is
K

d = S1 + U1S2 + U1U2S3 + “** + (U1”o”UK_l)SK

- [1+ U1+U1U2 +*..+ (ul”””uK_l)]+l

or, returning to our original notation,

d = S(nl) + u(n1)S(n2)+ ups

+ . . . + [u(nl) ““+ u(~_l)]s(Q - A

where

A = u(nl) + U(nl)U(nz)+ ... + [u(nl)...u(~_l)] .

llms, in our example, the terminalnodes nv

with their numbers u(nv) of states are (cf. Table IV)

‘1 ‘2 ‘3 ‘.4 ‘5 ‘6 ‘7 ‘8 ‘9
8 9 11 13 14 15 16 17 18

u(nv): 4 2 2222324

In this case our formula for d is

d = S(8) + 4s(9) + 8s(11) + 16S(13) + 32S(14)

+ 64s(15) + 128s16 + 384s17 + 768S18 - 1404

where d runs over the integers 1,2,...,3072 = D.

The flow chart of Fig. 2 is quite general except for

the step at which d la computed. This step is tai-

lored to the particular inference tree and specially

coded.
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