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A MONTE CARLO METHOD FOR PROBLEMS OF HIERARCHICAL INFERENCE

by

C. J. Everett

A simple Monte Carlo method is presented for estimating the
_probability p(Sl,...,SKIh) of the state vector (Sy,...,S5k) of the
K terminal (data) nodes in a general inference tree (with an arbi-
trary number of nodes, each having a prescribed number of possible
states) assuming the "hypothesis' node to be in state h. From this
information, the probability p(hfsl,...,SK) of hypothesis h, assuming

.,Sr) at the terminal nodes, is then
The whole routine is easily coded,
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I. INTRODUCTION
If p(h,d) is a joint probability density for
the pair of indices (h,d), then

p(h) = z p(h,d) e
d

is the corresponding marginal density for h, and
p(d{h) = p(h,d)/p(h) )

is the density for d, assuming h. Supposing that
only p(h) and p(d‘h) are known, then p(hld), the
probability of h, assuming d, is seen from Eqs. (1)
and (2) to be

Pl = ph,a)/D p(n,a)
h

- p(dmp(h)/z p|mpR) . @
h

The last expression, in terms of the given densi-
ties, is Bayes' formula for p(hld).
We are concerned here with its application to

a "hierarchical inference tree,'" for which p(h) is

given explicitly, and p(d]h) is expressible in terms
of given transition probabilities, albeit in an
extremely complicated way. 1In the following com-
plete treatment of the problem, which is designed

for computer coding, the role of Monte Carlo consists
in the estimation of the probabilities p(d|h) by
sampling methods, thus avoiding the difficult exact

computation.

ITI. THE INFERENCE TREE

The problem and general method are best de-
scribed by rcference to a particular but sufficient-
ly complicated example. Topologically, we are con-
cerned with an "inference tree" such as that in
Fig. 1. The N(=18) points n = 1,...,N are called
"nodes" and are here numbered "level by level,"
advancing from left to right on each level %, the
levels proceeding downward from £ = 1 to & = L(=4),
the lowermost. A table is stored giving the number

N(2) of the last node on each level, as in Table I.

TABLE I
LEVEL TERMINUS
3 N
1 4
2 11
3 16
4 18
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Fig. 1. An Inference Tree

The single topmost node, n = 1, is the "hypoth-
esis node" and is the only one with no "ancestor."
Each node n # 2 has exactly one ancestral node m(n),
and these are stored in a table such as Table II.

The K nodes without "progeny" (here n = 8, 9,
11, 13, 14, 15, 16, 17, 18) are called "terminal"
or "data" nodes and are those subject to direct

observation.

TABLE II
ANCESTRAL NODES

n m(n)
1 0
2 1
3 1
4 1
5 2
6 2
7 3
8 3
9 3
10 4
11 4
12 5
13 6
14 7
15 10
16 10
17 12
18 12

IX1I. NODAL STATES AND TRANSITION PROBABILITIES

Each node n = 1,...,N of the inference tree
can exist in just one of a specified number o(n) of
"states," S(n) = 1,...,0(n). (No table of o(n) need
be stored.)

It is supposed that the hypothesis node n = 1
has H (here 3) such states, h = 1,...,H, and that
the probability p(h) of its existence in any state
h is known. This information is stored in a table
such as Table III. ‘

It is further assumed that, given the state
{=1,...,0(m) of the ancestral node m = m(n) of
any node n # 2, there is a known transition prob-
ability n??

states, j = 1,...,0(n).

for node n to assume the j-th of its
The corresponding cumulative
probabilities are here stored in the form of a

o(m) % o(n) matrix

(33)

(row index 1, column index j), one such matrix for
each linked pair of nodes [m(n),n], n = 2,...,N.

(To simplify coding, these matrices may obviously
be made square, and of identical size, if storage
space permits.) In our example, we store Table IV.
For instance, given that node m = 10 is in state

i = 3, there is an 802 chance that node n = 15 will

assume state j = 2.

IV. THE PRIOR DATA PROBABILITIES AND MONTE CARLO
Now suppose that node n = 1 is in a specified

state h, and fix upon a particular "state vector"

[S(nl),...,S(nK)] of the K terminal nodes

n 0,0 This connotes that, for each

K
v=1,.,.,K, the terminal node o, is in its state
S(nv) [=1,...,0(nv)].

Bayes' formula we require the probability

For the final application of

pIS()),..-,5(0,) [h] ®)

TABLE III
HYPOTHESIS PROBABILITIES

p(h) .

[ S -




1 [0.5 0.7 0.8 1
2]0.2 0.3 0.7 1

2

0.3 0.6 0.9

0.4 0.5

0.8

TABLE IV

TRANSITION PROBABILITIES

w & W N

3,8

w W P

4,10

Ny -

4,11
Pyy
102
1 (0.3 1
2105 1
307 1



of the terminal state vector [S(nl),....S(nK)],
assuming n = 1 to be in state h. Even for relative-
ly simple trees, an analytical approach, although
well defined, its far from easy (Ref. 1). 1In
principle, we should consider separately each pos-
sible sequence of transitions i + j throughout the
tree which result in the stipulated state vector,
multiplying all the corresponding transition prob-
abilities H?? for all pairs (m,n) of linked nodes,
and then summing all such products for all possible
transition sequences.

In contrast, the estimation of the probability
(4) by sampling is transparently simple, since we
may regard a terminal state vector as the result of
a kind of shower, or cascade descending from n = 1,
and governed by the given transition probabilities.
Thus, assuming n = 1 to be in the particular state
h, one "throws" successively for the state S(n) of
each node n = 2,...,N(1) on level £ = 1, using the
stored transition probability tables pig. Having
determined all states on level 1, the states of all
nodes on level 2 may then be thrown for in similar
fashion, and so down through the lowest level L.
At this point, the states S(n) of all nodes
n=1,,..,N have been assigned, and the results re-
corded in a temporary storage table as exemplified
by Table V.

TABLE V

CASCADE STATES

n S
1 h
S(2)
* 8 S(8)
* 9 S(9)
10 S(10)
* 11 S(11)
12 5(12)
* 13 S(13)
* 14 $(14)
* 15 S(15)
* 16 s(16)
* 17 s(17)
* 18 S(18)

In particular, a state vector [s(nl),...,S(nK)]
has been determined for the K terminal nodes
(nl,...,nK) (starred in Table V). There are

D= 0(n1)°'~0(nK)

such vectors in all, and they are easily enumerated
by a single index, d = 1,2,...,D, as shown in the
Appendix. Having computed the index d of the state
vector resulting from the above cascade, a 1 is
tallied in a storage location N(h,d). The latter
may be visualized in a tabular form, such as

Table VI for our example. Repetition of the process
for a sufficiently large number C of cascades yields
all the possible terminal state vectors d = 1,...,D,
each with approximately its correct frequency N(h,d).
Norming by C then gives the Monte Carlo approxima-

tion to the probability (4), namely
p(d|h) = N(h,d)/c

and the result is stored back in location N(h,d).
The routine is followed as indicated for each

of the states h = 1,,..,H of n = 1. At this point,

Table VI contains an entire listing of (approximate)

probabilities (4), namely

N(h,d) ~ p(d|h)

h=12,,..,H, d =1,2,...,D, and the first part of
the problem is complete.

V. THE POSTERIOR PROBABILITY OF HYPOTHESIS h

The ultimate question in hierarchical inference
asks for the probability p(hld) of a certain hypo-
thesis (state h of node n = 1), assuming a particu-
lar data vector, of index d, to be observed at the
terminal nodes Dyseeesy. As noted in Sec. I, this
is readily computed as

TABLE VI
INITIALLY, FREQUENCIES N(h,d)

h\QI 2 .o 3072 = D

1




p(h|d) = ped[h) p(h)/z p(|h) p(h)
h

which in our notation at this point is approximate-
ly

N(h,d) p(h)/z N(h,d) p(h) . (5
h

The details of machine computation, which are rou-
tine, are indicated in the flow chart of Fig. 2. A

storage block must be reserved for the D sums

A@ =) N(h,a) p(h)
h

as indicated in Table VII.
If the quotients obtained in (5) are stored
back at the locations N(h,d), Table VI will contain

the entire set of approximations
p(h]d) ~ N(h,d)

at the end of the problem. Printing the complete
result is obviously impractical in an involved case
such as our example, and is of course limited to
the information actually required. Various sum
checks can easily be included, as indicated in
Fig. 2.

Aside from the permanent storage already men-
tioned, one must include one additional table such
as Table VIII,

TABLE VII
BAYESIAN DENOMINATORS

d |1 2 e 3072 = D
2@ |

TABLE VIII

ADDITIONAL CONSTANTS

H 3

c 10°

L 4

D 3072

VI. A FLOW CHART

In the following chart, which is designed to
handle the general problem as just described, only
the formula for the terminal state index d (cf. the
Appendix) and the print routine are subject to
change. The letter r below refers to the next ran-
dom number of the random number generator. It is
understood that transfers to previous entries are
executed on Y (yes) or N (no), with the indicated
indices advanced by 1, whereas the opposite decision
always leads to the next step. The printed sum-
check parameters Tl,...,Th and U should all be unity.
Moreover, if any column of the final Table VI is
printed, its sum should also be unity.
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Fig. 2., Flow Chart
APPENDIX

ENUMERATION OF STATE VECTORS

For machine purposes, we require an enumeration
of the set of all

D = o‘(nl) soe o(rﬁ()

terminal state vectors [S(nl),...,S(nK)] by means of

a single index

d=1, 2, ¢, D .

For the moment, we denote O(iv) by o, and S(iv) by

Sv' If the states of terminal node n,, were numbered

35 =0, 1, *°-, ov -1

then the function

Sl + cls2 + 010233 + e + (crl---oK_l)sK




\\—

would run over all the integers 0,1,...,(01°°°0K)—l.
Since in our notation SV runs over the integers
1,2,...,0v, it is clear that a suitable formula for

the index d = 1,2,...,0 "°OK =D is

1

d = sl + cls2 + 010253 + see 4 (ol-"cK_l)sK

-[1+ 0y 0,0, + o + (ol-°-oK_1)] +1
or, returning to our original notation,
q = S(nl) + o(nl)s(nz) + c(nl)o(nz)s(n3)

+oe0e + fo(ng) e on_;)1S(n) - A

where

A =o(n) +0(n)olny) + +o+ + [oln)erroln, )] .

Thus, in our example, the terminal nodes n,

with their numbers c(nv) of states are (cf. Table IV)

i3
N
N

c(nv):
In this case our formula for d is
d = S(8) + 48(9) + 8S(11) + 16S(13) + 32S(14)

+ 645(15) + 128816 + 384817 + 768318 - 1404

where d runs over the integers 1,2,...,3072 = D.

The flow chart of Fig. 2 is quite general except for
the step at which d i1s computed. This step is tai-
lored to the particular inference tree and specially

coded.
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